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ON POSITIVE PRINCIPAL MINORS

George B. Dantzigl)

When a matrix is symmetric, the property of having all its
principal minors positive, is equivalent to being positive definite.

When a matrix is non-symmetric this is no longer true. For example

(1) . M=

has all positive principal minors, but

2 2
XMx = x; - 7x1x2 + x, < 0 for x = (xl,xz) = (1,1)

The converse, however, as shown in Gale-Nikaido [1 ], Cottle [2 ]

is true:

Theorem 1: The class with positive principal minors properly includes
those which are positive definite.
Proof: Assume M is positive definite, M {s non singular for if not,
then there would exist x = x° ¥ 0 such that Mx° = 0; ylelding

0z 0

x Mx = 0, a contradiction. It follows that every principal submatrix

of M is also nonsingular,

1)’I‘he author acknowledges leads suggested by David Gale.



Partitic:p 'b-t so that

i

* * *
choose x = (Y ,~1] where Y Ml = r, Then

—_— * - % %
X Mx = (Y ,-1] Ml c Y -(amm-Yc)>0
: "
Ml c Ml c 7 *
But det = det x|l "™ (det Ml) (a ~-Yeo)
mm
r a 0 a ~Yc
i mm mm -

’ Thus det M and its largest order principal minor have the same sign.
Inductively, since first-order principal minors are positive, so must
- the second order ones, etc., up to the highest order. Finally,

b example (1) shows that the inclusion is proper.

Although positive definite matrices: ‘M do not comprise the entire
class of positive principal minors, they can be used to generate a
-larger class by multiplying 7 by diagonal matrices on the right

and left to form DME. For example,

P 7011 -11(2/7 0] [1 -7

01JL0 1 0 1J 1

| positive positive principal minors but
: " definite not positive definite
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It is not difficult to show that for 2 x 2 matrices the entire

positive principle minor class can be so obtained from the positive

definite class. The following is easily seen.

Lemma: Let D= [d, ], E= [eij] be diagonal matrices with the

i3
11%14
of any principal minor of DME 1is the same as that of M, If M

property that d > 0, then for any M the sign (+, -, or 0)

is positive definite, then DME has positive principal minors.

Theorem 2: ‘If M has positive principal minors and there exist
diagonal D and E such that M= D"IME-1 is positive definite,
then there exists a diagonal matrix F such that F-IMF is positive

definite.

Proof: If M is positive definite so is AﬁhT for any nonsingular

T

A (since x(AﬁkT)xT - yﬁ} >0 where x ¥ 0 and y =xA ¢ 0). We

consider AﬁkT - AD-lME-lAT and choose A 8o that AD-l - (E-lAT)-1

or ATA = ED. Thus A = [a,,] could be chosen as a diagonal

1]

matrix such that a, -*'Vdiieii . Then F = [fij]

-1.T
diagonal matrix F = E "A" where f11 + Vdii/eii 5

is the

Theorem 3: The characteristic roots of (any) M are the same as

F-IHF for (any) nonsingular F.z)

2)A well known result of matrix theory.
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Proof: By definition, X 1is a characteristic root of M i1if there
exists an x ¥ 0 such that Mx = Ax, Setting Fy = x then y ¥ 0
if x ¥ 0 and we have MFy = AFy or (F-IMF) y = Ay 8o that A

is a characteristic root of (F_¥MF) also.

Theorem 4: If M is positive definite, the real part of every
3)

characteristic root is positive.

Proof: Let Mx = AX, x ¥ 0 and let x = u + iv, A = R + 1S, then

by substitution and equating the real and imaginary parts

Mu = Ru - Sv (u,v) # 0

ﬁv = Rv + Su
Now R > 0 follows from

0 < uTﬁh + vTﬁv = R (u2 + vz)

The following is known, see Gale - Nikaido [1].

Theorem 5: If M has positive principal minors, then every real

characteristic root is positive.

3)A well known result in matrix theory that is reviewed here for

non-symmetric M.




Proof: The characteristic equation is obtained by setting
det [M-)I] =0

this yields

A)m-l

m m=2
(=2) + cl(- + C2 (=) + 00 + Cm =0

where CJ is the sum of the j-th order principal minors. For

matrices withlpositive principal minors, Cj> 0. It is not possible
that ) < 0 because then all terms above would be non-negative
and the last term positive so that the left hand side would be

strictly positive, a contradiction.

Theorem 6 (Kalman*): There exist matrices M with positive principal

minors that have characteristic roots not all of which have
positive real parts; for such matrices no transformation M = DME
exists with diagonal matrices D and E such that M 1is positive

definite.

*
In a letter to D. Gale dated 9 July 1962, Rudolf E. Kalman showed that

10/3 - 4 - v11.1
8/3 1/3 -/ 1.1

~-/899.1-v89.1 30

had positive minors but had complex characteristic roots with
negative real parts.



Proof: If such D and E did exist, then by Theorem 2, an F would
exist such that FMF L is positive definite. By Theorem &4 L
would have to have characteristic roots with positive real parts.

By Theorem 3 the same would be truye for M. However M in the

example below does not have this property.

The first order principal minors are 1, 1, 1 whose sum C, = 3,

1

its second order ones are 2, 1, 1 whose sum {8 C, = 4, Its third

2
order one is 03 = 70. Thus M has positive principal minors. 1Its

characteristic equation is

3 2
AT - CIA + CZA - C3 0

— N onZia-7=0

which factors into
2
(AO=50"+22+14) =0

The characteristic roots are

AL = 45, A

, =1+ 113, Ay = -1- 113

Since the real parts of Az and A3 are negative, this establishes that

the class of positive principal minor matrices form a larger class

R A o o200 0




than those generated from the positive definite ones by simple
rescaling of the rows and columns.
In mathematical programming one seeks p-vectors x,y > 0

that satisfy y = Mx + q such that the products x = 0 for

174
i=1,2,..,p. The latter conditions may be replaced by the
minimum value of xTy = xTMx + qu, a quadratic function which is
convex if and only if M {18 positive definite. Certain solution
procedures based on convexity [2 ], [3 ], [4 ] turn out to be also
valid even when M has positive principal minors. This leads to
the speculation that by a simple change of units of x,y one could
obtain a new system y = Mx + g, (¥,X)>0, §1§i- 0 for 1i=1,..,p
in which the quadratic function §Tﬁ§ + §Tq is convex. However

we have shown that this is not always possible to do. The class

of positive principal minor matrices does not appear to be a
trivial extension of positive definite matrices. Solution
techniques also valid for the latter have somehow gotten around

the difficulties of local optimality usually associated with
nonconvex programming problems.

An open question posed by Gale_and Kalman and closely related
to considerations found in a paper by Arrow and McManus [5] is the
following:

Suppose for all diagonal matrices D such that dii >0, that
M has the property that the real part of every characteristic

root of MD is positive, does this imply there exists a D = D°

such that D°M 1is positive definite?
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